Innovative Design Concept of Cooling Water Tanks/Basins in Geothermal Power Plants Using Ultra-High-Performance Fiber-Reinforced Concrete with Enhanced Durability
نویسندگان
چکیده
The structure presented in this paper is intended to be used as a prototype reservoir for collecting water coming from the cooling tower of geothermal plant, and primarily designed compare performance different materials (traditional reinforced concrete Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC)) well assess structural solutions (wall with constant thickness versus wall provided stiffening buttresses). In absence specific code provisions, given novelty UHPFRC used, main properties design were determined through dedicated experimental campaign (tensile/flexural shrinkage). focus was on Serviceability Limit States, more specifically requirements regarding tightness. Given rather simple layout, especially compartments where no buttresses are present, linear elastic analysis determine internal actions. nonlinear behavior ensuing peculiar tensile constitutive response material taken into account locally, order stress level, depth compression zone crack width. finally compared reference compartment (made ordinary concrete), on-site observations measurements.
منابع مشابه
Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure
In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, suc...
متن کاملElectrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes
This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capa...
متن کاملEffect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete
The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze–thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or...
متن کاملDurability of Fiber Reinforced Concrete of Marine Structures
The usefulness of fiber reinforced concrete (FRC) in various civil engineering applications is indisputable. Fiber reinforced concrete has so far been successfully used in slabs on grade, shotcrete, architectural panels, precast products, offshore structures, structures in seismic regions, thin and thick repairs, crash barriers, footings, hydraulic structures and many other applications. This p...
متن کاملDamage Simulation of High Performance Fiber Reinforced Concrete
The simulation of damage and failure in short fiber reinforced composites like high performance hybrid-fiber reinforced cement composites is still a challenging task, due to the richness of failure mechanisms introduced by fibers on the mesoscale of the material. Randomly oriented, hooked steel fibers, like the Baekaert Dramix® fibers, sustainable modify the macroscopic failure behavior of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2021
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su13179826